Positrons possess unexplored potential for cancer therapy – Physics World

Positrons possess unexplored potential for cancer therapy – Physics World

Positron-emitting radionuclides have long been employed for diagnostic imaging, with PET scans using fluorine-18 (18F)-labelled fluorodeoxyglucose (FDG) playing an essential role in cancer diagnosis. But positrons could also be used to destroy cancer cells. Perhaps due to their prevalence within diagnostics, this therapeutic potential has to date been largely overlooked. A research team in Australia aims to address this oversight. The researchers, from the University of Sydney, Royal North Shore Hospital and the Sydney Vital Translational Cancer Research Centre, demonstrated the first in vitro evidence of the therapeutic potential of positrons on prostate cancer cells. They also derived the radiobiological parameters for 18F positron emission, reporting their findings in Scientific Reports. “We refer to it as positron emission radionuclide therapy, or PERT,” says senior author Dale Bailey. When the radionuclide 18F undergoes decay it emits a positron (a beta-plus particle emitted from a proton-rich nucleus). The positron will ultimately annihilate with an electron, leading to the emission of two 0.511 MeV photons. And it is these photons that are detected to create PET images. But before this final annihilation process, …
More on: physicsworld.com